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ABSTRACT
Reducing attack surface is an effective preventive measure to
strengthen security in large systems. However, it is challeng-
ing to apply this idea in an enterprise environment where
systems are complex and evolving over time. In this pa-
per, we empirically analyze and measure a real enterprise to
identify unused services that expose attack surface. Inter-
estingly, such unused services are known to exist and sum-
marized by security best practices, yet such solutions require
significant manual effort.

We propose an automated approach to accurately detect
the idling (most likely unused) services that are in either
blocked or bookkeeping states. The idea is to identify re-
peating events with perfect time alignment, which is the
indication of being idling. We implement this idea by devel-
oping a novel statistical algorithm based on autocorrelation
with time information incorporated. From our measurement
results, we find that 88.5% of the detected idling services can
be constrained with a simple syscall-based policy, which con-
fines the process behaviors within its bookkeeping states. In
addition, working with two IT departments (one of which is
a cross validation), we receive positive feedbacks which show
that about 30.6% of such services can be safely disabled or
uninstalled directly. In the future, the IT department plan
to incorporate the results to build a“smaller”OS installation
image. Finally, we believe our measurement results raise the
awareness of the potential security risks of idling services.

Categories and Subject Descriptors
K.6 [Management of computing and information sys-
tems]: Security and Protection

Keywords
Idling service detection; Attack surface reduction; Enter-
prise systems; Autocorrelation

1. INTRODUCTION
Managing the security of enterprise systems is always a

challenging task, because the overall security of the entire
enterprise is usually determined by the weakest link and to-
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day’s enterprise systems are so complex that it is hard to un-
derstand which program/process can be the weakest links.
Many security breaches start with the compromise of pro-
cesses running on an inconspicuous workstation. Therefore,
it is beneficial to turn off unused services to reduce their cor-
responding attack surface. Anecdotally, many security best
practice guidelines [13, 9] suggest system administrators to
reduce attack surface by disabling unused services. How-
ever, such knowledge needs to be constantly updated and it
is unfortunate that no formal approach has been studied to
automatically identify such services.

Prior research has mostly focused on the line of anomaly
detection to learn the normal behavior of processes and
then constrain them, e.g., by limiting accessible IP/port
ranges [33, 32, 34] or the system calls that are allowed to
be made [21, 30, 23, 19].

While such approaches may detect abnormal behaviors of
a process (e.g., possibly attacks), they belong to reactive
approaches rather than preventive ones. Obviously, reduc-
ing attack surface is a preventive measure that complements
anomaly detection. The strong semantic of idling services
enables more specific treatments (e.g., disable or even unin-
stall them) as opposed to the general treatments to anoma-
lies, e.g., raising a security alert. Unfortunately, the frequent
false alerts in anomaly detection make it rarely deployed in
practice. Identifying idling services, on the other hand, rep-
resent a much more cost effective solution where each service
only needs to be examined mostly once (e.g., to determine
if it can be safely uninstalled). Once a positive decision is
made, it completely eliminates the entire attack surface of a
process before an attack could ever happen. Unfortunately,
due to lack of formal methods, in state-of-the-art practice,
system administrators today could only depend on practical
wisdoms from Internet forums [10], and their own experi-
ence.

One might argue that system administrators or end-users
should setup their servers and desktop machines to only run
useful services and applications in the first place. However,
in practice, this is a daunting task. The modern OS vendors
tend to stuff more and more functionalities into their dis-
tributions, and provide a “one size fits all” system. Thus,
many services might not be useful for a particular user.
Even worse, today’s enterprises typically run a variety of
OS distributions. As a result, it is not easy for system ad-
ministrators to keep up with the purpose of each and every
service. Furthermore, systems keep evolving and users’ de-
mands keep changing. Given the complex dependencies in-
side enterprise, people tend to keep things as they are. Such
practice, therefore, negligibly leaves numerous idling services
running, and thus exposes unnecessary attack surface.



In this paper, we propose an automated method to de-
tect “idle/idling” services and also provide ways to reduce or
minimize their attack surface. An idling service is a service
that does not serve real workload, but rather running in a
blocked or bookkeeping state. A simple example is that a
long-running service may listen on a certain port, while in
reality no one has connected, or will connect to it. This
service thus should be disabled to eliminate possible remote
exploits. In our study, we find 25% of long-running processes
are idling services.

In general, there are two types of idling services. The first
type is easy to detect – the service process is completely
dormant, blocked waiting for events that would never ar-
rive. For the second type, the service processes regularly
wake up from blocked state and perform some “bookkeep-
ing” tasks – simple operations not relevant to the service
they provide. The second type is more difficult to identify,
since the bookkeeping operations could make these processes
appear as active and truly performing services. In order to
address the problem of identifying both types of idling ser-
vices, we propose LIPdetect (Long-running Idling Process),
an effective algorithm that is able to differentiate“bookkeep-
ing” activities from the ones resulted from real workload.

While LIPdetect could identify and report idling services to
system administrators, working with IT department of our
company we find in some cases the system administrators
are not 100% sure whether certain services can be disabled
without negative consequences. It is therefore desirable to
keep those services running while still reducing their attack
surface. In such cases, we fall back to the traditional wisdom
to constrain the runtime behavior of a process. To this end,
we design a simple tool named procZip that constrains the
idling service’s execution to previous known states. Com-
bining idling service detection (LIPdetect) and automated
process constraining (procZip), our system is therefore called
LIPzip.

We evaluate the results of idling service detection, and
perform a measurement study in an enterprise with both
desktop and server machines to show how much attack sur-
face can be possibly reduced. Meanwhile, we work with the
IT department personnel to confirm our results. We also
cross validate our results in a university department [12].

In summary, our paper has the following contributions:

• We propose an approach to identifying the long-running
“idling” services and show that we can accurately iden-
tify such processes (with less than 1.5% mis-classified).
• We deploy our solution in a real enterprise environment

on 24 hosts. We find that 25% of the long-running pro-
cesses are idling on average per host and they consti-
tute about 66.7% of attack surface of all long-running
processes. 51.1% of the 92 unique binaries have had
publicly known vulnerabilities.
• In collaboration with on-site system administrators and

owners of the hosts, we analyze 434 idling processes in
detail and classify 30.6% of such services can be dis-
abled to fully eliminate the attack surface. We cat-
egorize the common reasons why they can be safely
disabled or uninstalled, and show that such results can
be shared across enterprises to make recommendations.
• We design procZip and show that even though the sys-

tem administrators do not have the confidence to dis-
able all services discovered by us, 88.5% of the idling
services can be safely constrained by the procZip during
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Figure 1: The number of default running processes

a two-week evaluation, indicating that they are contin-
uing to be idling.

2. MOTIVATION AND OVERVIEW
Our motivation comes from the following observations:
1) Today’s computer systems are equipped with an in-

creasing number of functionalities (and thus also the attack
surface) with newly developed technologies, perhaps much
more than necessary for everyday use.

2) Systems are constantly evolving; more applications or
features are installed (or updated) over time but they are
left there even when no longer needed.

3) What makes the problem worse, in the Linux world,
there are a large number of different OS distributions which
make the IT systems largely heterogeneous and fragmented.

As a result, it is highly non-trivial to control or even un-
derstand all the systems precisely, let alone knowing whether
a process is actually performing useful work or simply“idling”.
According to the IT department in our enterprise, they in-
deed do not keep track of what Linux distributions or ap-
plications are installed, the reason being that they do not
want to get in the way of users doing what they want to do.

2.1 Measurement Study
To understand to what extent each observation is true,

we conduct the following measurements based on two data
sources. First, we look into the historical Linux distributions
of Ubuntu and Red Hat from public images that are available
on the Amazon EC2 service. Second, we collect information
about 67 hosts in a real enterprise.

Default long-running processes. We look into the
two popular Linux distributions Ubuntu and Red Hat over
the past six years and count the number of daemon pro-
cesses that are running by default after the system boots.
Figure 1 shows that the number is steadily increasing over
years. Note that the number from the server distributions is
not very high due to the fact that these images are tailored
to run on servers and thus many desktop features are not
installed by default. In general, the increase of the default
processes might render more and more idling processes.

User-installed long-running processes. We compare
the default running processes with a snapshot of long-running
processes in our own enterprise environment. We look at 13
Ubuntu 12.04 desktop machines and discover that on aver-
age 30 long-running processes on each host are not default
running processes of the installation image, indicating that
our employees tend to install many new services over time
and the system size has been considerably growing.

Heterogeneity. Inside our enterprise, we study 67 Linux
hosts including both desktops and servers. There are 7 Fe-
dora, 11 CentOS, and 49 Ubuntu hosts respectively. These
hosts include 3 unique Fedora versions, 6 unique CentOS
versions, and 7 unique Ubuntu versions. This demonstrates
the universal heterogeneity of Linux distributions. Indeed,



the management complexity rooted from the heterogeneity
is partly echoed by users asking questions on public forums
about what a specific process is for and why it is running [14,
7, 15].

In sum, all these evidences imply that there are potentially
many idling services in average enterprise systems.

2.2 Problem and Solution
Problem statement. The key problem we are address-

ing is how to reduce the attack surface incurred by long-
running daemon processes while minimizing the impact on
the normal operations. The first challenge is the lack of a
common definition on what types of processes can be safely
disabled or uninstalled.

Long-running Idling process. Our definition of long-
running idling processes comes from the following intuition.
As shown in a recent study [25], long-running processes are
typically structured as a giant loop, taking certain input
in the beginning of the loop and performing different opera-
tions based on the input. Such a long-running process will be
in one of the three states: (1) The process shows no program
activity in terms of instructions or system calls, e.g., blocked
on certain system calls waiting for input. (2) The process
repeatedly cycles through a loop to check certain input chan-
nels, e.g., polling on sockets or checking the existence of a
file. However, the input they receive has low entropy (same
repeated input) and does not trigger any (useful) operation
or they may not even receive any input at all (e.g., the poll
on sockets always timeout). As stated in §3, the challenge
here is that such repeating events need to happen with per-
fect time alignment in order to be safely considered idling.
(3) The process is taking input and perform useful opera-
tions based on the input.

In this work, we define the idling processes as processes in
state (1) or (2). Our insight is that if we can identify a list
of idling processes with decent accuracy, it is very likely to
have little impact on normal operations if we disable them.

Workflow. Our system operates as shown in Figure 2.
First, we collect data from hosts through monitoring agents
that we developed. The details about the agent is described
in §4. Then the data are taken as input to detect idling pro-
cesses (details described in §3). Then we produce the list
of idling processes and characterize their attack surface (ex-
plained in the following paragraphs). Next, we subject the
process with attack surface1 to two possible security actions.

Action 1: system administrators are usually in the best
position to examine the list of idling processes and decide if
they are needed. As shown in §7, we argue that such knowl-
edge is required to determine the future necessity of a pro-
cess with high confidence. In our evaluation, we show that
administrators in our enterprise confirm many of the idling
processes or services can indeed be disabled or uninstalled
without interrupting normal operations. We further corre-
late the results with an IT group in a university department
and show that the results can be shared effectively across
organizations.

Action 2: similar to anomaly detection techniques, an al-
ternative action is to “quarantine” or constrain their execu-
tions within the behaviors observed in the past (e.g., check-
ing the presence of a file). In this way, the process can still

1We are focusing on security and hence interested in attack
surface. Different prioritizing metrics are also possible (e.g.,
physical memory consumption).
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Figure 2: System workflow

continue to receive any potential triggering events. When
the triggering events do arrive in the future, we allow the
process to be “freed” as long as the privileged user chooses
to, e.g., entering the root credentials or confirming a link of
an email sent to a pre-registered address. Here, the idea is to
reduce the attack surface of processes but still promptly al-
lowing them to continue execution when they really need to.
Note that the strategy is flawed if we simply un-quarantine
the process whenever we see that the process is no longer
idling as it could be possibly triggered by an attack that
is actively trying to exploit a vulnerability of this process.
Even though this action is operationally similar to anomaly
detection in general, we point out that existing models from
anomaly detection, e.g., system call sequence or Finite State
Automata (FSA), do not suit our problem (described in §3
and §8). So we need to develop new models and methods.

Ideally, Action 1 is generally preferred since it can com-
pletely remove the attack surface. In practice, Action 2 can
be used as a backup for usability purpose.

Attack surface. Similar to a previous work [33], we
only consider system resources with “privilege discrepancy”
such as files and sockets as attack surface. For instance, if
a process is reading a file that is owned by the same user
who started the process, we do not consider it an attack
surface. As §6.2 shows, 29.3% of the idling processes we
discover have direct attack surface exposed (e.g., listening
sockets or reading a file owned by a different user). More
details in determining the attack surface is presented in §6
and Appendix. Based on the kind of attack surface they
expose, we can prioritize them for system administrators.
Note that the attack surface we compute is only the lower
bound. In fact, many of them may expose additional attack
surface once becoming active. As a result, the percentage
of idling processes that have attack surface in idling state is
only a conservative security metric.

Goals and non-goals. The goal of this paper is to in-
vestigate the security impact of idling processes and propose
automated methods to identify them. We argue that the
knowledge of the existence of such idling processes needs to
be made more readily available to the community.

Non-goals are:

• To develop counter-measures against specific types of
attacks. Rather, based on well-understood metrics of
attack surface, our system is to reduce the likelihood
of successful attacks.
• To come up with another anomaly detection algorithm.

Instead, since the semantic of“idling processes”is much
stronger than the abstract“normal behavior”in anomaly
detection, we can apply more specific treatment to dis-
able or uninstall such idling services. Even if we do
constrain them still, there is a much less false alert
rate.
• To design a perfect metric to compute the security risks

or attack surface of a process. Instead, we leverage
known metrics to achieve our goal.



3. DISCOVERY OF IDLING PROCESSES
As stated in §2.2, we are targeting at two categories of

long-running processes. It is trivial to detect the Category
I (Completely Idle) processes. As long as the process
does not have any CPU time (available in the procfs) for
longer than a significant time period (e.g., one week) they
are considered category I. This type of processes are usually
blocked on certain blocking system calls and does not get a
chance to return. However, it is much more subtle to detect
the Category II (Periodic/Repeating).

The rationale behind our method to detect category II
processes is that an active process typically interacts with
users and/or external inputs which should have non-trivial
dynamics in size, inter-arrival time of requests, or connec-
tion timeout, etc. If a process repeats regularly over days
and nights, it is highly likely that this process does not in-
volve human-driven workflow, and thus can be considered
idling. One might argue that batch jobs (e.g., cron jobs)
may also repeat daily or weekly, but they should not be
considered idling. We would like to clarify that we consider
repeating patterns at the system call level, including param-
eters and return values, instead of the“job”level. So even for
a repeating cron job, e.g., data backup, running daily could
see different sets of files every time and therefore generate
different sequence of system calls (and different parameters).

Possible solution from existing process behavior
models. As described in §8, there are several mainstream
process behavior models proposed before. Technically, we
consider our problem a special case to model certain aspects
of a process. We investigate if existing models are suitable
to solve our problem. Not to disrupt the flow of the paper
much, we present such discussion in more details in §8. In
short, existing models do not fit the idling process detec-
tion problem due to two main reasons: 1) Many approaches
model the behavior of a process based on a short history of
events. For instance, the n-gram-based model only considers
the n consecutive events [21]. The Finite State Automata
(FSA) models only constrain the next event based on the
current state. 2) While the sequence of events have been
modeled in several ways, the time information such as the ar-
rival time of events has not been fully considered. We should
be able to analyze periodic behavior which is composed of
a collection of diverse arrival time of events to accurately
characterize idleness.

We note that the timing of events can be critical. For
example, a busy web server may run in a loop and serve the
same page and carry out the same set of operations repet-
itively. Therefore, the sequence of events may be perfectly
repeating without considering the event timing. Hence, to
address our problem, one has to have a careful treatment of
timing, which is typically not entailed in anomaly detection.

3.1 Periodicity Detection: Background and Chal-
lenges

To find repeated patterns from sequence data is a common
problem in many research areas such as data mining and
signal processing [18]. A popular way to find the period
from data sequences is via Fast Fourier Transform (FFT).
However, only when the sequence is known as periodic as a
priori, FFT can give the period. FFT is not able to detect
whether a sequence is periodic or not.

In LIPdetect, we adopt the idea of autocorrelation to de-
tect periodicity. Autocorrelation measures the correlation

relation between a signal and itself after shift with a given
lag [18]. For a sequence S = {X1, X2, · · · , Xn} and a lag k
(0 ≤ k < n), autocorrelation of S with lag k is calculated
between sequence {Xk+1, Xk+2, · · · , Xn} and {X1, X2, · · · ,
Xn−k−1, Xn−k} using the following formula,

r(k) =
1

(n− k)σ2

n−k∑
t=1

(Xt − µ)(Xt+k − µ), (1)

where µ and σ2 are the mean and variance of the sequence
S. The value of autocorrelation falls in [−1, 1], where larger
absolute values mean stronger correlations and the positive
(negative) sign means positively (negatively) correlated.

If a sequence is perfectly periodic with period p, then the
autocorrelations of the sequence will be maximized (i.e., au-
tocorrelation equals to 1) when the lag k is a multiple of p,
that is, k = mp, where m is an integer (m = 1, 2, 3, · · · ).
Due to this property, autocorrelation can be used to detect
periodicity of sequences. Curious readers can refer to Fig-
ure 3 to get an early sense of how autocorrelation looks like.

However, autocorrelation cannot be directly applied in our
case to detect periodicity of a process. The primary reason
is that as in Equation 1, Xt’s are numerical values and thus
their mean and variance, as well as the multiplication and
addition operations on the values, are well defined. How-
ever, in event sequences, Xt’s are categorical values (i.e.,
event types) and all the operations as in Equation 1 are not
well defined on categorical values (e.g., it does not make
sense to add event type 1 and event type 2 to get event
type 3). Another issue with applying autocorrelation on
event sequences is that autocorrelation cannot capture the
time information between two events. In a process, different
system calls may introduce different intermediate idle time
intervals, and the length of the time intervals carries useful
information in inferring process periodicity. Autocorrelation
has no mechanism to encode such timing information.

3.2 Periodicity Detection on Event Data
We propose a new autocorrelation measure, denoted as

E-Autocorrelation, particularly for event data, which have
categorical values and varying time gap between events.

3.2.1 E-Autocorrelation
Correlation measure. To handle categorical value, we

changed the correlation measure from Equation 1 to:

re(k) =
1

n− k

n−k∑
t=1

I(Xt, Xt+k), (2)

where I(·, ·) is an identity function defined as follows:

I(x, y) =

{
1 if x and y are of same type
0 otherwise.

(3)

The value of re falls in {0, 1}. By re, an event sequence is
highly correlated if its shifted version and itself has many
same event types aligned.

E-Autocorrelation shares the same property with the con-
ventional autocorrelation, that is, when a periodic event se-
quence is shifted with a lag that is exactly a multiple of the
period, re achieves its maximum. Thus, E-Autocorrelation
is suitable for periodicity detection in event sequences.

Two-step periodicity detection. E-Autocorrelation
employs a two-step approach to find periodic events in terms
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(a) Periodic event sequence of an idling sendmail instance.
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(b) Aperiodic event sequence of a mysqld instance in active use.

Figure 3: An example of a process’s original event sequence, converted sequence as signal in time domain, and autocorrelation (top to
bottom). Periodic and aperiodic event sequences are presented respectively in the left and right sub figures.

of both event types and timing. For example, a pattern of
interest would look like open-read-close. Patterns open-
read-idle-close and open-idle-read-close will be considered
as different patterns since the time interval for idling is at
different places or has different length.

Step-1 is to identify periodicity from event sequences us-
ing E-Autocorrelation with all timing information ignored.
For an event sequence {X1, X2, X3, · · · , Xn}, we first calcu-
late the E-Autocorrelation value sequence {re(1), re(2), re(3),
· · · , re(n− 1)}. Then from the E-Autocorrelation sequence,
we find the values that are no less than a threshold α (α ≤ 1)
and consider them as peaks. Note that in a perfectly peri-
odic sequence, E-Autocorrelation values as 1 indicate peri-
odicity. However, since the event sequences could be noisy,
choosing smaller values than 1 as peaks provides a chance
for our approach to better tolerate noises and thus remain
robust. We use α = 0.95 based on our experiments using a
one-month training dataset.

After the peaks are located, whether the event sequence
(again, without time information) is periodic is determined
by looking at the standard deviation σ of the distances be-
tween consecutive peaks, where the distances are calculated
as the difference of lag values corresponding to the peaks.
Our analysis on datasets with ground truth shows that for
periodic sequences σ is typically smaller than 0.1, whereas
for non-periodic sequences σ is typically larger than 10 or
even 100. This indicates that σ could serve as a parame-
ter to differentiate periodic sequences from non-periodic se-
quences. Thus, we test σ against a pre-defined threshold
T (we set T as 0), and only when σ ≤ T , the sequence is
considered periodic.

Step-2: The periodic patterns recognized from Step-1
could be incorrect since time interval information is com-
pletely ignored. It is still possible that, for example, the
sequence {A,B,C,A,B,C,A,B,C} is determined as peri-
odic from Step-1. However, the duration of the first A,B,C
is 1,000 seconds, whereas the duration of the second A,B,C
is 1 seconds and the duration of the last one is 0.001 sec-
onds. In this case, it is not reasonable to claim that the
entire sequence is periodic. Thus, in the second step, the
results from Step-1 are post-processed so as to filter out the
cases that show no periodicity (or with incorrect period) in
terms of time. To do so, we find the events that appear
first in the periodic pattern identified from Step-1. In the
example of sequence {A,B,C,A,B,C,A,B,C}, such events
are the first event (the first A), the fourth event (the second

A) and the seventh event (the third A) since the periodic
pattern is A,B,C. This can be done by looking at the lags
corresponding to peaks, that is, if a peak occurs at lag value
k, then the k-th event is the one that appears first in the
periodic pattern. Such events are denoted as peak events.

Next, for each peak event at lag k, we need to validate
the corresponding period by checking if any event always
repeats itself after time tk. If the validation fails, we drop the
corresponding peak. After iterating through all peak events,
we are left with a subset of peak events, which correspond
to the true periodic pattern. In order to do the validation,
we construct a time sequence {t1, t2, t3, · · · , tm} where ti is
the timestamp of the i-th peak event. Then we compute the
standard deviation of a time interval sequence {t2 − t1, t3 −
t2, · · · , tm − tm−1}. If this standard deviation is close to 0,
then we consider the original sequence periodic and the true
period is the mean of the time interval sequence. Otherwise,
we calculate and test the standard deviation of sequence
{t3 − t1, t4 − t2, · · · , tm − tm−2}. The above procedure is
repeated until a period is identified or the length of the time
interval sequence is 1 (i.e., all the peak events are tested).

Figure 3 shows an example of original event sequences and
their autocorrelations. The raw event sequences are shown
in the figures in the top. Their converted time-domain sig-
nals and autocorrelations are presented below. The left sub
figures show a periodic event sequence and the corresponding
autocorrelation; the right ones show a non-periodic event se-
quence. Our E-Autocorrelation can effectively differentiate
periodic sequences from non-periodic ones and accurately
identify the repeating cycles for periodic sequences.

4. SYSTEM DESIGN
In this section, we describe the design of the two compo-

nents of LIPzip – data collection and process constraining.

4.1 Data Collection
While it is possible to monitor all activities of every pro-

cess by using kernel debugging or auditing facilities, such
as ptrace or auditd, doing so would incur significant per-
formance penalty and seriously impact the normal usage of
the system being monitored. In order to limit the moni-
toring overhead to an acceptable level, and allow for large
scale deployment in a real working environment, we design
a two-stage data collection and screening mechanism.

In the first stage, we perform light-weight monitoring for
all processes on a system, by collecting partial information



Event Type System Calls

process event fork,vfork,clone,execve,exit,exit_group

network event socket,bind,connect,accept

file event open,creat,stat,access,dup,close

IPC event pipe,socketpair,shmget,msgget,
socket,bind,connect,accept

Table 1: System calls being monitored (partial list)

(such as time stamp, system call type, and error code) for
a subset of security-relevant system calls. For instance, our
observation indicates that read and write are among the
most frequently used system calls. However, a process must
first open a file before it could perform read/write opera-
tions on the file, and the usage of open and close system
calls are over an order of magnitude less. And thus, by in-
ferring read/write operations from open and close system
calls, we deduct more than 90% monitoring overhead. We
systematically studied the properties of every system call,
and selected system calls that are crucial for our analysis,
categorized into four types, as shown in Table 1.

With data collected from the first stage monitoring, we
apply our E-autocorrelation to screen all processes and dis-
cover those that are likely to be“idling”. However, due to the
incomplete set of system calls, this screening stage produces
a small number of false positives (around 18.2% according
to our empirical observation) – i.e., some processes classi-
fied as “Category I” (complete idle) do in fact make very
light-weight system calls which we do not monitor; simi-
larly, some processes classified as “Category II” (periodic)
make unmonitored system calls in non-periodic manner.

In order to remove the false positives, we subject those
processes to the second stage monitoring. In this stage,
we collect more comprehensive information (such as call
stacks, parameters and return values) for all system calls.
The heavy-weight monitoring would not induce significant
impact to the system, because the targeted processes have
little or no activity, thanks to the first stage screening.

4.2 Process Constraining: procZip
We define the “constrained” state of an idling process as

the following: (1) The process is allowed to continue its ex-
ecution without any interruption, as long as it behaves con-
sistently with its previously observed idling behavior; (2)
When the behavior of the process deviates from its idling
behavior, its execution is interrupted, and human interven-
tions are needed to either allow the process to continue exe-
cution, or be terminated. Compared with simplistic mitiga-
tions, such as directly terminating an idling process, process
constraining is a much more practical approach to reduce
attack surface, because it leaves room for recourse in case
of useful processes being mistakenly classified, and avoids
serious negative impact on availability and user experience.

Different system mechanisms, such as memory protection
and code instrumentation which build a program state ma-
chine [30, 23], can be leveraged to achieve process constrain-
ing to different degrees. Developing a precise and efficient
program behavior model is not the focus of our study. In
this work, we simply choose to design a simple model based
on system call instrumentation only to illustrate that idling
processes can be easily constrained. In particular, we inter-
cept all system calls of the target idling process, and build
its “idling behavior” profile, which comprises of the variety
of system calls as well as their calling context (CC) [36].
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Figure 4: System Architecture

When the target process tries to make a system call that
does not match the “idling behavior” profile, this incident
is captured and corresponding manual intervention routine
(e.g., a pop-up window) is triggered. Because CC is a rich
source of process internal state information, this approach
could establish precise behavior constraining. Meanwhile,
although such detailed system call instrumentation looks
heavy weight, since the idling processes are generating little
to no system calls, we do not observe any noticeable system
slowdown in practice.

For category I processes, because of their complete idle-
ness, the constraining will be in effect immediately. In other
words, any system call from these process will be considered
as anomaly and thus will trigger manual intervention. For
category II processes, a “profile building” phase, which lasts
one repeating cycle, will be carried out before the constrain-
ing become effective. During the “profile building” phase,
any system call and its CC will be recorded as allowed“idling
behavior”. Afterwards, if a system call is detected with un-
matched system call and/or CC in the “idling profile”, man-
ual intervention is triggered.

5. IMPLEMENTATION
In this section, we first provide an overview of our light-

weight data collection system, which logs and collects pro-
cess activities. Then, we describe notable implementation
details of the process constraining mechanism.

5.1 Data Collection System
We implement and deploy a client-server system to achieve

ubiquitous and light-weight data collection. The infrastruc-
ture being used for process events collection has a three-tier
architecture, i.e., the monitoring agent, the backend stor-
age, and the analysis engine. Figure 4 illustrates the system
architecture. The agent deployed on each host is responsible
for performing both stages of data collection, as described
in §4. For the first stage, the agent monitors a subset of
system calls of every process on each host using two major
data sources. One is the system call information provided
by the kernel built-in Linux Audit subsystem [8]. The other
is the auxiliary information from the proc file system. Be-
cause the majority of the monitoring overhead comes from
the processing of data streams coming from the Linux Au-
dit subsystem, we build a custom audit log handler, which
achieves 14.3× speedup compared with the stock audit li-
brary. For the second stage, the agent leverages the stan-
dard strace utility to perform the monitoring of all system
calls for selected processes.

From real system deployment, we observe that the agent
introduces unnoticeable latencies to commonly used pro-
grams (e.g., bash, vim, Firefox, Thunderbird, etc.). The
average resource consumption of the agent is negligible un-
der today’s main-stream system configurations. On an idle
system, the agent processes about 30 system calls per sec-



ond, and consumes under 1.0% of one processor core, and
less than 100MB of memory. With intense workload, such
as Linux kernel compilation, the agent processes about 5800
system calls per second, and use up to 14.8% of one proces-
sor core and 300MB of memory. For data reporting over the
network, each agent on average consumes under 13kbps of
network bandwidth.

5.2 Process Constraining
To implement the procZip, we leverage the kernel ptrace

facility to intercept all system calls of the constrained pro-
cess. For each intercepted system call, we uncover its calling
context (CC) by walking up the call stack using libunwind,
and concatenate each call site address into a chain. During
the“profile building”phase, we store all observed system call
and corresponding CC in an associative array of CC-syscall
pairs, which is used as the “idling profile”.

When a constrained process is detected to attempt “out-
of-profile” system calls, we implement a pop-up dialog win-
dow to prompt the local user for either approval (i.e., al-
lowing process to continue out-of-profile behavior) or ter-
mination. For our evaluation purpose, we also implement
an alternative routine, which logs the event while silently
allow the out-of-profile behavior to continue. This imple-
mentation enables us to non-intrusively perform evaluation
on real server systems and workstations.

Of course, procZip will consume some system resources like
CPU and memory on top of that of the idling process. Based
on our experiment, such resource consumption is negligible.

6. EVALUATION
Data collection. The lightweight agent data was col-

lected from a total of 64 Linux hosts. The data used for
analysis was collected from December 2013 to July 2014, a
period of over 180 days. The average days for each host is
about 155 days during which each machine has rebooted at
least once (due to power outage and so forth). Interestingly,
most of these machines were never turned off by human even
for desktop machines (this phenomenon is also observed in
other environment [28]). Out of 64 hosts, we further inves-
tigate 24 hosts to study in more details about the process
behaviors.

Determining attack surface. After determining idling
processes, we prioritize high-impact attack surface cases (that
are more likely to be exploited) based on the resource types
and the process user ID. Similar as many existing works [32,
33, 34, 5, 3, 4], we define the attack surface as a set of com-
munication channels (resources) provided by OS, including
files, Internet sockets, and Unix domain sockets, through
which an attacker can potentially gain additional privilege.

We summarize what kind of resources we consider and
how we determine if they are considered attack surface as a
set of rules presented in Appendix. We rank the severity of
the attack surface in the following order:

1. A root process with an open public network port.
2. Open files that are writable by anyone or a root process

with local listening sockets accessible to everyone.
3. Other attack surface (see Appendix).

Evaluation methodology. We present the following re-
sults in the evaluation:
• How many processes are found by our LIPdetect tech-

nique as idling? What are their associated security risks
(i.e., attack surface)? Results are discussed in §6.1 and §6.2.

Workflow Role of Human

Operational Determine safe-to-disable processes

Non-
operational

Tag hosts and processes (§6.1)
Search for historical vulnerabilities of idling processes (§6.2)
Examine why some idling processes are not constrainable (§6.3)
Perform case studies to investigate the reasons of the existence
of idling processes (§6.4)
Conduct survey to cross validate our results (§6.5)

Table 2: Clarification of human involvement in the operational
workflow and non-operational (evaluation) workflow

• What percentage of discovered idling processes can be
easily “quarantined” to reduce attack surface? Results are
discussed in §6.3.
• Can these idling processes be safely disabled in the eyes

of system administrators and users? What are the reasons
for their existence? Results are discussed in §6.4
• Can our findings be shared across different enterprises?

Results are presented in §6.5.
For the first result, we use the lightweight agent data to

first gather a list of potential idling processes on 64 hosts.
Next, we further select 24 hosts to deploy the second-stage
monitoring to perform the end-to-end analysis.

For the second result, we deploy procZip to constrain the
execution of the idling processes for two weeks and log any
deviation attempts or new behaviors.

For the third and fourth result, we perform case study
in collaboration with sysadmins and users in our enterprise
and a survey with sysadmins in a university department.

It should be pointed out that the system administrators
are mainly involved for evaluation purpose. In the opera-
tional workflow of our approach, system administrators are
only involved (as the last step shown in Figure 2) when one
really wants to kill a process or uninstall a program. There
is no better way because it is extremely difficult to predict
whether an idling process may become useful in the future.
Therefore, it has to be human to judge the reasons case by
case and determine whether a process can be safely killed or
a program uninstalled. Our detection system itself (includ-
ing data collection, idling process analysis, attack surface
measurement) is automated and does not require any hu-
man intervention. To avoid confusion, we make a summary
in Table 2 to differentiate human involvement in the opera-
tional workflow and non-operational (evaluation) workflow.

6.1 Idling Processes Summary
First, by analyzing the lightweight agent data, we get to-

tally 5839 long-running processes, among which 2095 were
identified as potentially idling. Here, we consider a process
long-running if it has been running for longer than 80% of
the host uptime. Next, due to privacy and policy concerns,
we select 24 hosts to deploy the second-stage monitoring.
With strace data from 24 hosts (1774 long-running pro-
cesses), 434 out of the 546 potentially idling processes are
determined to be really idling. Among them, Category I has
328 (overall 18.5%) and Category II has 115 (overall 6.5%).

Unique binaries. Even though the number of idling
processes is high, they come from only 92 unique programs
(i.e., executable names). Some idling programs are com-
monly seen on many hosts, while some others only exist on
a few hosts. Figure 5 plots the fraction of instances of each
unique executable in a decreasing order. It is interesting to
see that there is a long tail where about 42 binaries occur
less than twice in the 24 hosts, indicating a wide variety of
idling processes and services. While it would take some time
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Figure 5: Distributions for number of instances of unique exe-
cutables

Category I Instances Category II Instances
acpid 19 atd 16
rpc.idmapd 13 rpcbind 5
hald 11 sendmail 5
avahi-daemon 11 mdadm 4
gconf-helper 10 smartd 4

Table 3: Number of unique instances of idling processes and the
corresponding category

to investigate all of them for system administrators, one can
prioritize which processes to look at first is based on how
popular it is inside the enterprise. Table 3 lists the top
ranked programs, the corresponding number of instances,
and their categories.

Idling process distribution. We further study the dis-
tribution of idling processes from the 24 hosts with regard
to host types. We want to see whether it is desktop OSes
or server OSes that have more idling processes. To achieve
this, we tagged each host as “User” to indicate a desktop
OS, “Server” to represent a backend server, and “Testbed”
to mark those testbed servers that are less frequently used.
We did this based on our own knowledge and also with the
help of the IT personnel. Figure 6(a) shows the distribu-
tions of idling processes over “User” OSes, “Server” OSes,
and “Testbed” OSes. We can see that the “User” desktops
and the “Server” machines have similar percentage of idling
processes. In contrast, the “Testbed” machines have much
more idling processes. This is quite in line with our expec-
tation.

Intuition tells us that the characteristics of an idling pro-
cess should also affect on its distribution. For instance, the
idling processes on a server that is mostly accessed through
remote shells might have more programs without GUI; while
for a desktop host, GUI processes would instead take a larger
portion. Due to the lack of a standard way to classify GUI
and non-GUI programs, we manually tag each process. Fig-
ure 6(b) shows that the “User” machines do have more idling
GUI processes than those “Server” machines.
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Figure 6: Distributions of idling processes in different aspects.
(a) OS purposes: User/Server/Testbed; (b) Processes types:
GUI/non-GUI
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Figure 7: Breakdown of system calls that Category I processes
are blocked on

Syscall patterns. For category I processes, as shown in
Figure 7, we observe a variety of blocking system calls. We
can see that most of the them are select, read, and ppoll

which are operated on file descriptors. Such system calls
have a parameter where a timeout value can be specified.
We are surprised to see many programs choose to block in-
definitely, given that such programming practice may lead
to responsiveness issues [6].

A non-negligible fraction (16.3%) of them are not blocked
on file descriptors, e.g., wait4, waitid, and futex. At first
glance, no attack surface seems to exist. However, it is plau-
sible that after the syscall returns, the program will start
taking input (e.g., by calling open), which may constitute
attack surface.

For category II processes, out of 115, 49 repeatedly try to
take input through system calls like read and recv, but al-
ways failed with errors (e.g., timeout). 18 processes that suc-
cessfully take input, yet do not produce any output (e.g., no
write syscall). When the process does produce output, the
output is most likely to be exactly the same across time. We
measured the entropy [29] of the parameters for the output
relevant system calls (e.g., write, writev, recv, recvmsg,
recvfrom) and found that among the 32 processes that pro-
duce outputs, 14 have the same exact output, indicating zero
entropy.

6.2 Attack Surface and Vulnerabilities
Attack surface. Idling processes not only waste system

resources but may also expose attack surface. Here, we study
what is the percentage of idling processes which expose at-
tack surface and what kind they are. Note that the attack
surface we measure is only a lower bound, as the attack sur-
face is measured only when a process is idling. Once become
active, it may start accessing additional resources and open
up new attack surface.

With that in mind, we still want to understand the attack
surface exposed when these processes are idling. Overall, 127
of 434 (29.3%) processes have direct attack surface through
files that are owned by a different user, or listening sockets
which can be either accessed by all processes on the same
host (if local socket) or by other hosts (if listening on the
public interface).

Further, we find that the attack surface of the idling pro-
cesses consists of 66.7% of attack surface exposed by all long-
running processes, based on a snapshot of all the currently
open resources on each host. Table 4 provides a breakdown
of the attack surface. As we can see, the majority of the at-
tack surface comes from the listening sockets (both remote-
facing and local-facing). It is surprising to see that there are



Resource File Listening Listening
sockets (public) sockets (local)

Root 10 43 66
Non-root 19 51 53

Table 4: Attack surface breakdown of 434 idling processes

94 public open TCP/UDP ports (without one connecting to
them) from just 24 hosts, which raises significant security
concerns, especially considering 43 of them are opened by
root processes. Note that these processes are idling and no
one has connected to these ports for a long time. For the lis-
tening local sockets, they are either TCP/UDP ports bound
to loopback address or UNIX domain sockets. Such listening
sockets present a threat on local privilege escalation attacks,
which is less concerning but still important given the popu-
larity of local privilege escalation attacks in Linux [33, 34].
Note that the number of file attack surface is smaller, in-
dicating the more popular use of sockets as communication
mechanisms in long-running processes.

Known vulnerabilities. Out of all the processes, based
on their executable names, we find that 47 out of 92 (51.1%)
unique binaries have had known vulnerabilities in their de-
velopment history according to the CVE database [2] and
other online sources [1]. It indicates that there can be real
threats to the idling processes that we discover. Just to give
one example, remote attackers can trigger a vulnerability
(CVE-2009-1490) in sendmail by crafting a long X-header to
make a buffer overflow, which allows the attackers to execute
shellcode and gain root privilege.

6.3 Constrainability Evaluation
Next we want to evaluate how constrainable the idling

processes are. Through deploying procZip for two weeks on
the 434 idling processes on 24 hosts, we find 384 processes
(88.5%) did not have any “new behavior” or deviation from
the previously observed behaviors – with a new syscall or
an existing syscall at a different call stack, which means
that they are very well constrained. 96.3% processes have
less than 10 times where new behaviors are observed. More
than 93.5% processes converge within one day.

Figure 8 shows the distributions of the number of times
that new behaviors appear and the converge time across the
434 processes. The results give a strong indication that the
majority of idling processes are indeed constrainable. Of
course, ideally, if a process is really idling and the procZip is
given the correct repeating cycle, they should be 100% con-
strainable and should not have any new behaviors observed.
In reality, however, why are there still a few idling processes
not constrainable? To answer this question, we further in-
vestigated 13 such processes from 10 hosts and found that
they can be attributed to the following reasons:

First, 3 cases we find are due to the fact that some system
calls are issued inside signal handler which may cause new
call stack to be observed, depending on which instruction is
interrupted. Note that this is not a fundamental limitation
of our approach. We could support the signal handling cases
by interpreting the parameters of signal handler registration
calls (e.g., signal, sigaction), which allows us to know
the address of the handler function. In that case, when we
observe a new call stack in the future and see the address
of handler function in one of the stack frame, we can simply
ignore the immediate stack frame next to it of which the
return address can be anywhere in the program.
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Figure 8: Distributions of (a) deviation attempts and (b) con-
verge time

Second, due to the inherent noise tolerance characteristics
of autocorrelation, 3 cases are detected with a repeating
cycle shorter than the reality. These 3 cases are considered
the inaccuracy of our idling process detection algorithm.

Third, 7 cases are due to real workload change which
breaks its previous idling pattern. These 7 cases are con-
sidered the false positives of our approach. On one hand,
we can argue that such cases are less likely to occur if we
monitor their historical behavior long enough. On the other
hand, we may want to admit that it is fundamentally hard
by any means to predict the future.

6.4 Safe-to-disable Processes and Case Stud-
ies

Many idling processes are considered safe-to-disable in the
eyes of system administrators and owners. We conduct de-
tailed case studies in our enterprise to identify safe-to-disable
processes and the reasons of their existence. The key chal-
lenge to perform the study is that a process needs to be ex-
amined in the typical runtime context (job-mix) of the host
(or cluster of hosts) under examination. To achieve this, we
have had intensive conversation with the system administra-
tors and owners of the machines. Finally, we gather a list
of processes that are considered safe-to-disable and we pro-
vide analysis and insights about such processes. Hopefully,
our investigation results can serve as a helpful reference to
average system administrators and end users in general.

In our case studies, 133 out of the 434 processes are con-
sidered safe-to-disable (30.6%). The top reasons are listed
below (without specific order):
• Supporting unused hardware devices, e.g., blue-

tooth devices, 3G/4G data card. Given that we are in an
enterprise environment with fairly standard hardware setup:
USB keyboard/mouse and Ethernet cables, such processes
are very unlikely to be used. After checking with our sys-
tem administrators, we conclude that they do not actually
support the use of bluetooth devices or 3G/4G data cards
and therefore these processes can be disabled. As a more
detailed example, mdadm is a Linux utility used to manage
software RAID devices. In strace log, the mdadm process is
repeatedly calling dup, fcntl, and close on a configuration
file /proc/mdstat, while this file shows that no RAID has
been configured. We further check the file system and real-
ize that there is only one physical volume, which does not
require RAID management. Interestingly, the reason that
the process is running is that the host were previously used
to manage RAID devices. When the RAID devices were re-
moved, the person forgot to terminate this service. Besides



this example, most of these processes are actually bundled
in the default installation image of the Linux distributions.
• GUI-related processes that run on server ma-

chines, e.g., notification of sound level change. The servers
in our environment are never intended to be used as desk-
top hosts. As a result, many GUI-related processes can be
disabled. For instance, strace logs show that the indicator-
sound-service process is completely blocked on a system call
on three machines and never return. Actually we find out
that they sit in a server room where no one is using it to out-
put any audio, let alone observing the sound level changes.
• Supporting unused miscellaneous software ser-

vices, e.g., virtualization daemon (no VMs are supposed
to run on them), super server which is not configured to
start any daemon on demand. We find that some machines
are pre-installed with the xinetd (extended Internet dae-
mon) which listens for incoming requests over a network
and launches the appropriate service for that request. By
examining this process in detail, we realize that the config-
uration file indicates that there is no service registered at
all, which indicates that this process is not intended to run.
This is also confirmed with system administrators.
• Applications not properly setup/configured, e.g.,

location tracking service, web servers serving default page.
Many programs, when installed, are not fully configured to
run with intended behaviors, possibly due to human negli-
gence or mistakes. For example, we see an instance where
the web server thttpd is installed and running for a long time
yet idling. We further check the web directory and find that
it only contains the default pages that come with the de-
fault installation. In other words, one can only browse the
default page (which is a 404 page). Another example is send-
mail which is normally used as mail servers and mail relays.
Desktop users, in our environment, do not really need this
program as our email systems go through the company mail
servers (Microsoft exchange server). We typically use IT-
supported programs such as Thunderbird to receive emails.

Although rare, another interesting case is that certain ap-
plication/service is in the process of being retired and its
functionalities are to be replaced by a new one. In this
case, we observe that the old application/service can still
be running for some reason. For example, HAL (Hardware
Abstraction Layer) was aimed for providing hardware ab-
stractions for UNIX-like OSes. Since 2011, major Linux dis-
tributions are in the process of deprecating HAL and hald
is in the process of being merged into udev and Linux ker-
nel. Permitted by the owner, we disable hald on one desktop
machine and the user did not notice any influence. The CD
and USB icon can still automatically appear on the desktop
when being inserted. The discovery of this type of case is
very surprising and not originally anticipated by us.

Overall, a large portion of safe-to-disable processes can be
attributed to the fact that OSes are packing more and more
general purpose applications and utilities. Some of them
are installed at a later time, yet they are either not really
properly configured to begin with, or they are no longer
needed but forgotten to be uninstalled.

Boundary cases There exist a large number of processes
that are in the grey area even in the eyes of system admin-
istrators. Here are some examples to illustrate such cases:
the irqbalance process is a daemon process that balances in-
terrupts across multiple CPUs or cores, which is supposed
to provide better performance and IO balance on SMP sys-

tems. However, we find an intensive and insightful discus-
sion among the Ubuntu package management people in their
online forum about whether to start this process by default
[11]. Our survey indicates that irqbalance seems to be tar-
geted at a specific server environment and may sometimes
downgrade the performance. Further, on desktop machines,
such performance concern is barely serious.

To more objectively evaluate whether the processes are
indeed safe to disable. We have asked a few users who
have agreed to have a few services disabled, which include:
bluetoodhd, mdadm, indicator-sound-service, xinetd, thttpd,
irqbalance, sendmail, smartd, hald, and winbindd over the
course of a few days. The users do not observe any dis-
ruption to the daily use of the machines.

6.5 Cross Validation
Since enterprise systems usually share some common char-

acteristics, we extend our evaluation to another organization
to see whether our results can also be shared. Particularly,
we conduct a survey with three system administrators in a
university department. One of them is the head of the IT
group and the other two are both senior system administra-
tors with multiple years of experience. The IT group is re-
sponsible for managing computers in the classrooms, faculty
offices, and student laboratories. They are also in charge of
the department web server, email server, databases, etc.

We create a questionnaire containing 20 programs selected
from our safe-to-disable list together with the specific rea-
sons of their existence. We ask them to 1) give a score from
0-10 (0-strongly disagree, 10-strongly agree) to indicate to
what extent they can confirm our result based on their own
experience, and 2) note down whether they happen to find
the exact same program on their machines and also think it
is unnecessary but somewhat were not aware of before.

Due to page limit, we put the detailed survey results in
[12]. Overall, the average score is 9.6, showing a reasonably
large degree of agreement. Two sysadmins even state that
they find all the 20 programs on their machines that they
believe are unnecessary but did not notice before.

7. DISCUSSION
Idling processes and their necessity. The concepts of

“idling” and “unnecessary” are not exactly the same thing.
An idling process describes a process that is in a state given
past observations. Whether or not it is still necessary to
keep in the system is a question that requires future knowl-
edge. For instance, an idling daemon process that supports
cellular network cards may be idling for the past one year.
However, it is impossible to predict if someone may need to
use the cellular network card in the next day. Therefore, the
necessity of a process can only be answered by prophet, in
our case, the system administrators.

In addition, the concept of “necessary” is subjective. A
process that is deemed unnecessary may be actively perform-
ing useful operations. Consider a process which outputs a
pop-up notification window (e.g., for instant messenger ap-
plications) to the screen from time to time. Some user may
find it useful while others will not and may even find it dis-
turbing. Such problem is outside the scope of this paper.

Idling process and its usage. In this paper, we study
a number of idling processes from our automated method
and then confirm that a large fraction of them can be safely
disabled or uninstalled. We envision that such knowledge



can be shared across enterprises or organizations. In §6.4,
we notice that every safe-to-disable process has its reason
to be idling. We could actually construct a knowledge base
of such safe-to-disable processes. One way to share such
knowledge is to compile a list of questions such as whether
the organization requires the usage of special hardware (e.g.,
cellular network connection) or whether the host is to be
used as a server or desktop. Answering these questions will
then lead to an automated selection of services to install in
order to minimize the attack surface while at the same time
satisfy the functionality requirement.

8. RELATED WORK
Unnecessary service. Few studies have looked at what

services are idling or unnecessary inside an enterprise envi-
ronment. Guha et al. [20] examined network traffic traces
collected from laptops in an enterprise network and looked at
services that generate useless traffic (e.g., broadcast discov-
ery messages with no response, failed TCP flows). Although
network traffic can also indicate whether a process is idle or
not, but it is by no means accurate. For example, a pro-
cess might have its listening socket idle but still do useful
work (e.g., a database server has an idle Internet socket but
is serving a local web server via a Unix socket). Our ap-
proach looks at both CPU time and system calls, which can
precisely describe the idleness of processes.

Attack surface metrics and reduction. Traditionally,
attack surface has been evaluated at different system lay-
ers. Manadhata et al. proposed a software system’s attack
surface measurement [27]. This system uses several met-
rics such as system channels (e.g., sockets), system methods
(e.g., API), and the transferred data items to determine the
level of risk. Szefer et al. [31] takes a similar approach
for virtualization. Authors proposed NoHype, a hypervisor
that eliminates the hypervisor attack surface. Kurmus et
al. [24] measured attack surface metrics on Linux kernels.
Moreover, they reduced the attack surface and kernel vulner-
abilities using automated compile-time OS kernel tailoring.

In our work, we choose a set of simple attack surface met-
rics to measure at the system layers. Most of the above
approaches can complement our method to provide more
complete and precise attack surface.

Anomaly detection and process behavior models.
Numerous attempts have been made to study how to model
the behavior of a process and learn its normal behavior for
the purpose of performing anomaly detection [21, 30, 23,
19]. Even though our study also models the behavior of a
process, it incurs a different set of challenges. Specifically,
we examine if existing models can directly be applied in
our case. In general, there are three categories of process
behavior models: 1) sequence of system calls [21, 26], 2)
deterministic Finite State Automata (FSA) [30, 23], and
3) probabilistic FSA (e.g., Hidden Markov Model) [35, 19].
For 1), the idea is to use n-gram model to learn the common
n consecutive system calls. The problem is that an idling
process needs not only to have common n-grams, but also
the exact time alignment of events. For 2) and 3), the model
only learns what the next system call is allowed based on the
current “state”, it does not learn the linkage between a long
sequence of events. For instance, if the model has two states
A and B, with the possible transition of A→ B, B → A, and
A → A. It is unclear if this leads to a repeating sequence
at all. For example, the allowed sequence could be either

A → B → A → A → B → ... (non-repeating) or A → A →
B → A → A → B → ...(repeating). Furthermore, such
models do not consider time information at all. Our time-
augmented version of autocorrelation approach fits well the
problem of identifying repeating patterns.

Vulnerability discovery. A number of studies have
systematically revealed a class of vulnerabilities related to
resource-access. Vijayakumar et al. [33] studied name res-
olution vulnerabilities in Linux systems. For instance, if
a root process reads a file in a public directory, an attacker
may be able to remove the file and creates a link to /etc/passwd

to steal sensitive data. According to their study, a signifi-
cant number of such vulnerabilities exist. Such file-based
attack surface is also considered in our evaluation. Process
firewall [34] has been proposed to help defend against such
class of vulnerabilities. Our study aims at identifying idling
processes which can lead to an easier treatment (e.g., disable
the service) so as to reduce their attack surface.

Security risk analysis. There exist a number of studies
focusing on the security risk of services [22, 16, 17]. Homer
et al. [22] presented a sound and practical modeling of se-
curity risk utilizing attack graphs and vulnerability metrics.
Chakrabarti et al. [16] models the spread of malware and as-
sesses the benefits of immunization of certain nodes. Chan
et al. [17] models the attack and defense as interdependent
defense games to study the cost-effectiveness of certain se-
curity decisions. Such assessment and modeling is abstract
using probability to evaluate the likelihood of compromise.
Their risk models can be integrated with our system to pro-
vide more accurate risk and impact analysis.

9. CONCLUSION
In this paper, we present LIPzip, a system that identifies

idling services, an under-studied research area, and explore
its security application of attack surface reduction. We de-
fine idling process as long-running processes that are in a
blocked or bookkeeping state, and we propose an adaptive
autocorrelation-based algorithm which can robustly detect
idling process from system call information. We evaluate
the effectiveness of our algorithm in a real enterprise work-
ing environment, using a custom built light-weight and scal-
able data collection system. With both case studies and
automatic validation through process behavior constraining,
30.7% of the identified idling processes can be safely disabled
to fully eliminate their attacker surface, and 93.5% can be
safely and automatically constrained to reduce attack sur-
face without system administrators’ manual intervention.
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APPENDIX
Determining Attack Surface. We summarize what kind
of resources we consider and how we determine if they are
attack surface as a set of rules: (1) If a process has opened a
resource in readable mode, and (2) we consider three main
resource types: Internet listening sockets (either bind to lo-
cal or public interface), Unix domain listening sockets, and
regular files. (2.1) If it is an Internet listening socket, we
directly consider it attack surface as it can be accessed by
anyone (host-based firewalls are not configured in our en-
terprise). Many known vulnerabilities are exploited by first
connecting to a listening socket [4]. (2.2) If it is a Unix
domain listening socket, we first check if it is file-backed.
If so, the file permissions apply when connecting to such a
socket, and we treat it similar to a regular file (as described
next). Otherwise, if it is not file-backed, we consider it at-
tack surface since anyone local can access it. Vulnerabilities
have been reported when accessing Unix domain sockets [5].
(2.3) If it is a file, and the file is not a directory or a special
file such as /dev/null and files under /proc. We consider
it attack surface if one of the three following conditions is
satisfied: (2.3.1) Everyone can write to the file. (2.3.2) The
file owner group ID is different from the process group ID
and the group-writable permission bit is set. (2.3.3) The
file owner user ID is different from the process user ID and
the file owner user ID is not root (as we assume the root
is trusted). Vulnerabilities related to files have also been
widely discussed [33, 3].
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